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Abstract 

Matrix elements of heavy-light biinears measured on the lattice are compared to 
their continuum counterparts. The heavy quark is treated using the static effective 
field theory, and the light quark is treated as a staggered fermion. The time compo- 
nent of the axial current is the bilinear used to determine f~. We derive identities 
which simplify the calculations involving staggered fermions by reducing them to 
calculations involving naive fermions. 
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1. Introduction 

Lattice calculations involving direct simulation of the b quark are beyond the reach 

of current calculational power. However many matrix elements of interest involving 

the b quark, including that which determines f~, have the following two properties: 

(i) the large rest energy of the b quark is not transferred to lighter hadrons, and 

(ii) the b quark’s spatial momentum momentum is small. An effective field theory 

action valid for matrix elements having these properties is presented in a recent 

paper by Eichten and Hill [l], which brings together lines developed by Eichten and 

Feinberg [2], &swell and Lepage [3], and Politzer and Wise [4]. The remaining 

scales in the effective field theory are small enough that these matrix elements can 

be calculated reliably on the lattice. 

Using the static approximation for the heavy quark propagator for the lattice 

determination of f,y and the B meson B parameter was proposed by Eichten [5]. The 

derivation of the heavy quark propagator on the lattice from an effective field theory 

action, and the calculation of the perturbative corrections to the matrix element of 

an arbitrary heavy-light bilinear measured on the lattice with the light quark treated 

as a Wilson fermion, will be presented in reference [8]. ‘These corrections for the 

bilinear determining fB have also been studied by Boucaud, Lin and P&e [7]. 

In this paper we obtain the perturbative corrections to the matrix element of an 

arbitrary heavy-light bilinear measured on the lattice with the light quark treated 

as a staggered fermion. The matching is done in two steps. First the matching 

between the full theory and the effective theory in the continuum is done, and 

then the continuum effective theory is matched to the lattice regularized effective 

theory. Also, rather than directly calculating the perturbative corrections to the 

Green’s functions involving staggered fermions, we will demonstrate that in the 

continuum limit they can be reduced to Green’s functions involving naive fermions, 

a substantial simplification. 

The organization of the paper is as follows: In section two, we will review 

continuum results for the first step of the matching. In section three, we will give 

the discretization of the theory, including a brief review of staggered fermions, and 

propose a discretization of the bilinear. In section four, we will reduce the calcu- 

lation of the Green’s functions involving staggered fermions to Green’s functions 

involving naive fermions. In section five, we conclude by using these results to do 

the matching between the continuum effective theory and the lattice effective theory 

and evaluate the result for the bilinear used to determine f~. 
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2. The Static Effective Field Theory 

The Euclidean static effective field theory action is [I] 

SE = I 
d4z b+(i&, + gAr,)b. (2.1) 

The two-component field b annihilates heavy quarks and bt creates them. A fixed 

momentum (m, 0) has been removed from the momentum of the heavy quark. The 

most general heavy-light bilinear in the full theory in the continuum is i;I’q. P is any 

Dirac matrix, and q is the light quark field. Parametrize P by twoby-two blocks: 

(2.2) 

The corresponding operator in the static effective theory is 

bt(a Ph. (2.3) 

The ratio of the matrix elements of these operators in the effective theory to 

their counterparts in the full theory was calculated in reference [l]. The calculation 
- 

was done to order as and the operators were renormalized using MS. The ratio was 

determined by comparing the matrix element of the bilinear between an incoming 

light quark and an outgoing heavy quark. For calculational convenience, the light 

quark mass was set to zero and the mass shell point was taken to be external 

momenta equal to zero. The infrared divergences that appear at this point were 

eliminated by giving the gluon a mass, which is acceptable because all the diagrams 

are QED-like. The result is 

l-92 
12+ ( 

Crln g +cr ) 
Pa ) 

where Cl = 5/2-Aa/4 and Cz = -4+3H1f4-HH’-GH/2. G is defined by GP = 

~sP-y,,, H is defined by Hr = T,,Prllr and .E is the derivative with respect to d of 

H in d dimensions. The dependence on the gluon mass dropped out of the ratio, 

as would the dependence on the external momenta and the light quark mass, had 

they been included. 

What remains to be calculated to determine the ratio of the operator in the 

lattice regularized effective theory to the operator in the full theory in the contin- 

uum, is the ratio of the operator in the lattice regularized effective theory to the 

continuum effective theory. First we describe the lattice regularized theory with the 

light fermion treated as a staggered fermion. 
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3. Discretisation 

A discretization of the effective field theory action for the heavy quark is [6] 

SE =;a3 c, b+(n)(b(n) - U,(rd)+b(n-6)). 

While many discretizations of the action are possible, this one yields the static quark 

propagator currently in use in lattice calculations [8] and has no doubling problem. 

Before proposing a discretization of the bilinear (2.3), we briefly review staggered 

fermions [9] to establish notation and emphasize features that are important in 

reducing our calculations to perturbative calculations involving naive fermions. 

That one might hope to reduce perturbative calculations involving staggered 

fermions to calculations involving naive fermions is clear from the way staggered 

fermions are constructed [lo]. One begins with the naive fermion action: 

&a’ c,,, T(n) 7r (Nn+ii) - 4b-a). (3.3) 

The T,, are hermitian. We have taken the fermions massless and left out the gauge 

links. Next “spin diagonahze” the action by the change of variables 

$(n) = I?, x(n), where I?,, = $‘I . . . ^(dn’. (3.3) 

The field z(n) is defined as if it were the hermitian conjugate of x(n). Since the 

transformation acts only on spinor indices there is no obstacle to introducing the 

gauge fields at any point. The resulting action is 

$a’ C”,, cp(n) xS(4(xb+r4 - Xb4)~ (3.4) 

The action involves four one-component fermion fields on each site which couple to 

one another only through the gauge fields. The seeming complexity of staggered 

fermions arises because the spin-diagonahzation results in the position dependent 

phase c,(n) appearing in the action. Fortunately, the only property of the spin- 

diagonalized action we need is that it is diagonal in the x field index and it is 

identical for each value of the index. Now three of the four x fields are eliminated. 

The reduction in the number of fermion fields by a factor of four leaves us with a 

theory describing four Vlavors” instead of sixteen. 

To study processes with external fermions, we need one final step: the con- 

struction of spinor fields out of the remaining one-component x field. The field will 

be a matrix carrying two indices: a spinor index and a “flavor” index. The field is 

only defined on coarse lattice sites, that is sites for which rz = 2N: 

WW = &p c,, rl, xW’+77). 
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C E 2d/2 is equal to four in four dimensions, 11 is a vector with entries of 0 or 1, 

and I?,, is defined just like r,. g ’ d fi d IS e ne as if it were the hermitian conjugate 

of Q. When the gauge fields are introduced, a product of gauge links, Uv(2N), can 

be inserted in the sum so that the field transforms under gauge transformations 

as a field living at site 2N. To summarize, the essence of staggered fermions is 

spin-diagonalization of the naive fermion theory followed by reduction to a single- 

component fermion field. 

An obvious discretization of the bilinear (2.3) to consider is 

J(2N) = b+(2N)(a P)Q(2N) 

= & C,, bt(2N)(a P)r, xPN+v). 
(3.6) 

However, this bilinear has two disadvantages. One is that it is not a “zero-distance” 

bilinear when written in terms of the fundamental fields. When the gauge fields are 

introduced, gauge links would have to be inserted into the bilinear in order to make 

it gauge-invariant. This increases the number of diagrams that must be calculated in 

perturbation theory. Although there are sometimes reasons associated with current 

conservation for considering extended operators, they do not apply here. The second 

disadvantage is that the bilinear only depends on the heavy quark field at a single 

point of the hypercube that is labelled by the coarse lattice site 2N. Generally an 

operator that depends more uniformly on the fields at all 16 points of the hypercube 

will have better numerical behavior. 

We eliminate both these disadvantages by proposing another operator which 

has the same naive continuum limit: 

Jr (2N) = & ‘& b+(2N+v)(a P&x(2N+9). 

We have subscripted the bilinear by I’, the Dirac matrix which parametrizes the 

corresponding bilinear in the full theory. Note that the bilinear still carries a “flavor” 

index; if the staggered fermion field is describing four “flavors” of d quark, there 

are four neutral B mesons, and the index on Jr(2N) determines which of these the 

bilinear couples to. 

Having established the discretization of the action and the bilinear6 that we 

will use, we enumerate the Green’s functions that must be calculated to obtain the 

ratio of the matrix element of the operator in the effective theory in the continuum 

to its counterpart on the lattice. Since we will use the same mass shell point 

and method of regulating infrared divergences as in reference [l], there are no new 

continuum computations to do. The lattice computations required are heavy quark 
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wave function renormalization, the renormalization of the field used to create the 

light quark, and the Green’s function containing the insertion of the discretized 

bilinear. 

Details of the evaluation of the graphs contributing to heavy quark wave func- 

tion renormalization, figure 1, as well as subtleties associated with linear divergences 

in the mass renormalization of the heavy quark, will be discussed in reference [6]. 

The contribution to heavy quark wave function renormalization from these graphs 

is 

&A- 2logXzaz+e), 

where e = 24.47. 

The only Green’s functions that remain to be obtained are the one determining 

the renormalization of the field used to create the light quark, and the one with 

the insertion of the discretized bilinear. These Green’s functions both involve the 

staggered fermion field. We could attempt to directly calculate them. However, the 

position-dependent phase in the spin-dlagonslized action, as well as the the position- 

dependent matrix, I’,,, appearing in the bilinear, make this approach somewhat 

difficult. Instead, we will demonstrate that in the continuum limit these Green’s 

functions can be reduced to Green’s functions involving naive fermions. 

4. Reduction of Green’s Functions 

It is the close relation of the staggered fermion theory to the naive fermion theory 

that makes it possible to relate their respective Green’s functions. Sharatchan- 

dra, Thun and Weisz [ll], in an early perturbative calculation involving staggered 

fermions, demonstrated a simple relation for the Green’s functions they had to 

calculate, ah of which had no external fermions. They introduced a projection for- 

malism rather than explicitly solving for the remaining single component fermion 

field. They found that if they divided by a factor of four for each internal fermion 

loop, they could use naive fermion Feynman rules. 

The result we obtain for our Green’s functions, which do have external stag- 

gered fermions and insertions of a bilinear containing a staggered fermion field, is 

somewhat similar. We do not use the projection formalism, as we need to explicitly 

build spinor fields creating external fermions out of the one component fermion field. 

The relationship we derive between the staggered fermion Green’s functions and the 

naive fermion Green’s functions only holds in the limit that the lattice spacing goes 

to zero, which is the limit of interest. The proof is valid to any order in perturbation 

theory, and is clearly generalizable to a large class of Green’s functions. 
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We give the derivation of the reduction in detail for the Green’s function con- 

taining the insertion of the discretized bilinear: 

GKs(n, iN’, 2N) = (b(n) J@V’)sg@N)) 

= .$ ‘&Jb(n)b+(ZN’+v’)(a P)r,x(2N1+Il’)sx(2N+ll)r~). (4’1) 

The matrix S is an arbitrary matrix contracted with the “flavor” indices. We will 

soon see that in the continuum limit only the diagonal elements of S contribute. 

Notice that the interpolating field we use to create the light quark is the field 

G(2N) defined as in equation (3.5), without the insertion into the sum of gauge 

links U,(2N) designed to make it transform as a field that lives at the coarse lattice 

site 2N. Of course the choice of the interpolating field for the light quark cannot 

affect our result for the normalization of the bilinear: If we had included the gauge 

links in the definition of the field, we would have additional graphs to evaluate, but 

they would exactly cancel with additional graphs that would then appear in the 

calculation of the renormalization of the interpolating field. 

The &St step of the reduction is to reintroduce the three other x fields. Instead 

of thinking of ~(2N’+$)x(2N+n) as a scalar we think of it as a matrix proportional 

to the identity and place it in the matrix multiplication between l?v, and S. The 

only effect of this reintroduction on G~s(n,2N’,2N) is that there are now four 

fields x that can propagate in any internal fermi loop. Since the action for each 

of these fields is identical, this can be compensated for in perturbation theory by 

dividing by a factor of four for each internal fermion loop. 

The second step of the reduction is to undo the spin diagonallzation (3.3). This 

change of variables transforms equation (4.1) to 

G&n, XV’, 2N) = 

& -f&b(n)b+(2N’+~‘)(a ~)111(2N’+d)?(2N+d)rv% 
(4’2) 

where the action for $ is the naive fermion action (3.2). 

Now Fourier transform (4.2) by setting N’ = 0, multiplying by (2a)4e-ik’2Na 

and a4eiPna, and summing on N and n. Thus momentum k enters at 2N and 

momentum p leaves at 12. G~s(p, k) so defined is doubly periodic in k. We also 

introduce Gr(p, k), the corresponding Green’s function in the naive fermion theory. 

The result is 

GKS(P, k) = 

= 
-i(k+nr-p)‘9’aei(k+~,).9a Gr(p, k+n,) r,sp’+ 

(4.3) 
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Like n’ and 7, the vector r has entries of zero or one, while x, = (w/a)r. We see 

there are contributions from the naive fermion Green’s function from sixteen points 

in the Brillouin zone. 

We now use the doubling symmetry present in the naive theory to rewrite 

Gr(~,k+*~)= G-,w,(p,k)M!, where My -((i-nr~)~~ .-.(iyd'y~)l~. (4.P) 

At this point it is convenient to parametrize the matrix S as M,. We have 

GKS(P, k) = 

-i(k+n,-p).9’aea(k+n,).9a GrMJP, k)M;r,MJ’t (4.5) 
V’ 

This expression for G~.q(p, k) is exact. The only modification of the naive fermion 

Feyn- rules used in calculating Gr~,(p, k) appearing on the right hand side is 

the division by a factor of four for each fermion loop. 

To make further simplifications, we perform manipulations valid only in the 

continuum limit. Since the naive fermion Green’s function appearing in (4.5) is 

log divergent by power counting, we can neglect all but the zeroth order piece in 
ei(k-p).$o and ,ik.va . m the a -+ 0 limit. Then apply the following identity: 

C, ei?rr.~ar,Mer~ = c26,,,M,. (43) 

The remaining summation on q’ is trivial and we obtain, 

GKS(P, k) = C&,oGr(p, k)(l + O(pa, ka)). (4.7) 

We see there is no contribution unless Q = 0. In terms of the original “flavor” matrix 

S, the statement is that only the diagonal elements of S contribute in the continuum 

limit, and their contribution is given by the Green’s function in the naive fermion 

theory, with the rule that for each fermion loop one divides by a factor of four. 

The contribution to Gr(p, k) at p = k = 0 from figure 2 is the zeroth order 

result times 

&A- 1nXzaz + d). (4.8) 

The evaluation of figure 2 for naive fermions is similar to the evaluation of the vertex 

correction presented in [6]. The method of isolating a + 0 divergences introduced 

by Bernard, Soni and Draper [12] was used, and the constant d was evaluated 

numerically using VEGAS [13]. We find d = 8.79. The error in this and other 

quantities evaluated by Monte Carlo integration are order one in the last decimal 

place. 
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Similar manipulations can be applied to the Green’s function determining the 

renormalization of the field creating the light quark: 

GKs(2N’, 2N) = (Q(ZN’)S@N)). (4.9) 

Because of the chiral symmetry, which is only softly broken even if the fermion has 

a mass, there are no linear divergences in the naive fermion Green’s function and 

there is no problem neglecting the Cl(ka) terms. The result analogous to (4.7) is 

G&k) = C&,oG(k)(l + Wa)). (4.10) 

Thus the renormalization of the interpolating field we used to create any of the four 

“flavors” of light quark is obtained directly from the wave function renormalization 

of a naive fermion. 

Calculation of naive fermion wave function renormalization is contained in [14]. 

We find a contribution of 

& (In Azaz + f), (4.11) 

where f = 6.54. We now have all the quantities required to compare the lattice and 

continuum effective theories. 

5. Conclusions 

The ratio of the matrix element of the discretized operator measured on the lattice 

to the operator in the continuum effective theory is 

1+& 
12.9 [ 

- log ~aaa + d + i (-2 log A’& + e) + i (log ~‘a’ + f)] 

ga --[-log$+D+~(-210g~+E)+~(log~+F)]. 
12x2 

(5.1) 

The terms in the first set of brackets are the lattice contributions from the vertex 

correction (4.8), heavy quark wave function renormalization (3.8), and light quark 

wave function renormalization (4.11). The terms in the second set of brackets are 

the corresponding contributions from the continuum graphs. The evaluation of 

D, E and F is presented in reference [l]. We find D = 1, E = 0 and F = l/2. 

The dependence on the gluon mass, A, drops out of the difference, as would the 

dependence on the light quark mass and the external momenta, had they been 

included. Note that unlike the continuum matching, the matching between the 
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lattice effective and continuum effective theories does not depend on I’. We can 

simplify (5.1) by taking /J = l/a. The result is 

1+ gz ++~,+~,-(~+~E+~~)]. 
127ra 

To obtain the ratio of the matrix element of a discretized bilinear measured on 
- 

a lattice with spacing a to its MS subtracted counterpart in the full theory with 

p = l/a, we take the product of the two ratios, (2.4) and (5.2). 

As an example, we compare the ratio of the bilinear used to measure f~ on the 

lattice to its counterpart in the continuum. If we use the extension of the gamma 

matrix algebra that ys anticommutes with all the r,,, 1 5 ~15 d, then for I’ = 707s~ 

G = -1, E = 2 and H’ = 1. So in this case, we have Cl = 312 and C, = -2. Using 

the continuum value of as with Am = 200 MeV for four active quarks, p = 2 GeV, 

and m = 5 GeV we find that expression (2.4) is 0.97. Evaluating expression (5.2) 

for p = B/g2 = 6.0 gives 1.19. Taking the product of the two ratios, we find that the 

value of f~ measured on a 2 GeV lattice using the static approximation should be 

reduced by a factor of 1.16. 

Although it is in principle a higher order correction in as, the largest source 

of uncertainty comes from whether to use the lattice or continuum value of czs 

in the lattice to continuum effective theory matching since as for the lattice is 

nearly a factor of three smaller than as in the continuum even at a matching scale 

of 2 GeV [11][15]. From experience with operators where the result is known and 

because the origin of the largest corrections in (5.2) are from the lattice diagrams, 

it is standard to use the lattice value [16]. 

We have calculated the relation between the matrix element of an arbitrary 

lattice-regularized heavy-light bilinear and its continuum counterpart, including 

the bilinear used to determine f~, using a method which minimized the difficulty 

of staggered fermion perturbation theory. The reduction is valid to any order in 

perturbation theory, should be genera&able to a wide class of Green’s functions, 

and may simplify the calculation of perturbative corrections to other operators [17]. 
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staggered fermions. We also thank Andreas Kronfeld and Miriam Leurer for useful 

discussions. This work was initiated at the Aspen Center for Physics. We thank the 

Center for its support and hospitality. OFH is supported in part by the Department 

of Energy under contract DE-AC02-76ER-00881. 

9 



References 

[1] E. Eichten and B. Hill, FERMILAB-PUB-89/184-T, to appear in Phys. Lett. B. 

[2] E. Eichten and F. Feinberg, Phys. Rev. D 23 (1981) 2724. 

[3] W. E. CasweII and G. P. Lepage, Phys. L&t. 167B (1986) 437. 

[4] H. David Pohtzer and Mark B. Wise, Phys. Lett. B 208 (1988) 504. 

[5] E. Eichten, in Field Theory on the Lattice, edited by A. BiIIoire et al, Nucl. 

Phys. B (Pm. Suppl.) 4 (1988) 170. 

[6] E. Eichten and B. Hill, FERMILAB-PUB-89/209-T, in preparation. 

[7] Ph. Boucaud, C. L. Lin, and 0. P&e, Phys. Rev. D 40 (1989) 1529, see refer- 

ence [S] for criticism of their lattice results. 

[8] Ph. Boucaud, 0. Phe, V. J. HiI& C. T. Sachrajda, and G. MartineiIi, Phys. 

Lett. B 220 (1989) 219; 

E. Eichten, FERMILAB-CONF-89/211-T. 

[9] J. Kogut and L. Susskind, Phys. Rev. D 11 (1975) 395; 

T. Banks, J. Kogut, and L. Susskind, Phys. Rev. D 13 (1976) 1043; 

L. Susskind, Phys. Rev. D 10 (1977) 3031. 

[lo] F. GIiozzi, Nucl. Phys. B 204 (1982) 419, for au algebraic construction; 

H. KIuberg-Stern, A. Morel, 0. Napoly, and B. Petersson, Nucl. Phys. B 220 

(1983) 447; 

M. F. L. Golterman and J. Smit, Nucl. Phys. B 245 (1984) 61, and references 

therein. 

[ll] H. S. Sharatchaudra, H. J. Thun and P. Weisz, Nucl. Phys. B 102 (1981) 205. 

[12] C. Bernard, A. Soui and T. Draper, Phys. Rev. D 36 (1987) 3224. 

[13] G. Peter Lepage, J. Comp. Phys. 27 (1978) 192. 

[14] G. MartineIIi and Y.-C. Zhang, Phys. Lett. 123B (1983) 433. 

[15] A. Haseufratz and P. Hasenfiatz, Phys. Lett. 93B (1980) 165; 

A. Hasenfratz and P. Hasenfratz, NucI. Phys. B 193 (1981) 210; 

R. Dashen and D. Gross, Phys. Rev. D 23 (1981) 2340. 

[16] C. T. Sachrajda, in Lattice 88, edited by A. S. Kronfeld and P. B. Mackenzie, 

NucI. Phys. B (Proc. Suppl.) 9 (1989) 121, for a review. 

[17] D. Da&I and S. Sheard, Nucl. Phys. B 302 (1988) 471; 

S. Sharpe, Nucl. Phys. B (Proc. Suppl.) 7A (1989) 255; 

S. Sheard, Nucl. Phys. B 314 (1989) 238. 

10 



P 

Fig. 1: Contributions to Heavy Quark Wave Function Renormalization 

Fig. 2: Contribution to the Green’s Function with the Insertion of a Bilinear 


